
Verifying CTL∗ Properties of GOLOG Programs
over Local-Effect Actions

Benjamin Zarrieß1 and Jens Claßen2

Abstract. GOLOG is a high-level action programming language for
controlling autonomous agents such as mobile robots. It is defined
on top of a logic-based action theory expressed in the Situation Cal-
culus. Before a program is deployed onto an actual robot and ex-
ecuted in the physical world, it is desirable, if not crucial, to ver-
ify that it meets certain requirements (typically expressed through
temporal formulas) and thus indeed exhibits the desired behaviour.
However, due to the high (first-order) expressiveness of the language,
the corresponding verification problem is in general undecidable. In
this paper, we extend earlier results to identify a large, non-trivial
fragment of the formalism where verification is decidable. In partic-
ular, we consider properties expressed in a first-order variant of the
branching-time temporal logic CTL∗. Decidability is obtained by (1)
resorting to the decidable first-order fragment C2 as underlying base
logic, (2) using a fragment of GOLOG with ground actions only, and
(3) requiring the action theory to only admit local effects.

1 Introduction

GOLOG [11, 16], a family of high-level action programming lan-
guages, has proven to be a useful means for the control of au-
tonomous agents such as mobile robots [5, 10]. It is defined on top of
action theories expressed in the Situation Calculus [19, 21], a dialect
of first-order logic (with some second-order features) for represent-
ing and reasoning in dynamic application domains. Before a GOLOG

program is deployed onto a robot and executed in the physical world,
it is often desirable, if not crucial, to verify that certain criteria are
met, typical examples being safety, liveness and fairness conditions.

Verification of GOLOG programs was first considered by De Gi-
acomo, Ternovska and Reiter [12] who presented a correspond-
ing semantics of non-terminating processes defined by means of
(second-order) Situation Calculus axioms, expressed temporal prop-
erties through (second-order) fixpoint formulas, and provided man-
ual, meta-theoretic proofs to show the satisfaction of such properties.
Since it is more preferable to do verification in an automated fash-
ion, Claßen and Lakemeyer [6] later proposed an approach based on
a new logic called ESG, an extension of the modal Situation Calcu-
lus variant ES [15] by modalities for expressing temporal properties
of GOLOG programs. Using regression-based reasoning and a newly
introduced graph representation for programs, they provided algo-
rithms for the verification of a fragment of the formalism resembling
a first-order, but non-nested variant of the branching-time temporal
logic CTL. Their procedures, which perform a fixpoint computation

1 Theoretical Computer Science, TU Dresden, Germany, email:
zarriess@tcs.inf.tu-dresden.de

2 Knowledge-Based Systems Group, RWTH Aachen University, Germany,
email: classen@kbsg.rwth-aachen.de

to do a systematic exploration of the state space, could be proven to
be sound, but no general termination guarantee could be given due to
the verification problem being highly undecidable.

It would of course be desirable if termination were guaranteed,
which could be achieved by imposing appropriate restrictions on the
input formalism such that the verification problem becomes decid-
able, while preferably retaining as much first-order expressiveness
as possible. One corresponding approach is presented by Baader, Liu
and ul Mehdi [2] who, instead of using the fully-fledged Situation
Calculus and GOLOG, resort to an action language [3] based on the
decidable Description Logic (DL) ALC [1] and approximate pro-
grams through finite Büchi automata. They could show that verifica-
tion of LTL properties overALC axioms thus reduces to a decidable
reasoning task within the underlying DL. Baader and Zarrieß [4] later
lifted these results to support a more expressive fragment of GOLOG

program expressions that goes beyond what can be represented by
Büchi automata, in particular regarding test conditions φ? that are
needed for expressing imperative programming constructs such as
while loops and conditionals, but restricts all actions to be ground.

Another approach is taken in [7] where it is shown that Claßen
and Lakemeyer’s original verification algorithms can be guaranteed
to terminate by restricting oneself to a decidable, two-variable frag-
ment of FOL as base logic for the Situation Calculus [13], allowing
only ground action terms in GOLOG programs, and requiring actions
to only have local effects [17]. Compared to the above mentioned re-
sults by Baader and Zarrieß, local-effect action theories represent an
increase in expressiveness as ALC-based action definitions only al-
low for basic STRIPS-style addition and deletion of literals, but the
class of non-nested CTL-like properties supported by Claßen and
Lakemeyer’s method is less expressive than LTL.

In this paper, we turn towards unifying these earlier approaches
within a single formal framework, while even increasing expressive-
ness. In particular, we (1) useC2 as base logic, the two variable frag-
ment of first-order logic with counting quantifiers, which subsumes
both ALC and the two-variable fragment of FOL; we (2) formulate
action effects through ES-style local-effect action theories; and (3)
we show that verification is decidable for GOLOG programs with
only ground actions even in the case of properties expressed in the
branching-time temporal logics CTL∗, which is strictly more expres-
sive than both CTL and LTL. We obtain decidability by construct-
ing a finite abstraction of the infinite transition system induced by a
program, and showing that the abstraction preserves satisfiability of
CTL∗ properties over C2 axioms. We also obtain a 2-NEXPTIME

upper bound for the computational complexity of the problem.
The remainder of this paper is organized as follows. Section 2

presents our action formalism, namely the modal Situation Calculus
variant ES using C2 (the two-variable fragment of first-order logic

with counting quantifiers) as decidable base logic, as well as GOLOG

programs and their semantics. In Section 3 we then define the prob-
lem of verifying CTL∗ properties over such programs, and show (in
a constructive manner) that the problem is indeed decidable. We then
discuss related work and conclude. Because of space constraints, de-
tailed proofs of our results have to be omitted. They can be found in
[22].

2 Preliminaries
2.1 The Modal Situation Calculus ES based on C2

In this subsection we recall the main definitions of the modal Situa-
tion Calculus variant ES [15]. Instead of using full first-order logic,
we restrict ourselves to the two variable fragment with equality and
counting of FOL named C2.

Syntax: We start by fixing a set of terms. In our language we con-
sider terms of two sorts, namely object and action. Terms can be built
using the following symbols: an infinite supply of variables x, y, . . .
of sort object, a single variable a of sort action, an infinite set NI of
rigid object constant symbols (i.e. 0-ary function symbols), and a fi-
nite setNA of rigid action function symbols. A term is called ground
term if it contains no variables. Note that in contrast to [13, 7] we also
allow action functions with arity ≥ 2. We use the following symbols
for vectors of object variables and object constants: ~x denotes a vec-
tor of at most two variables, ~y a vector of arbitrarily many variables
and ~c a vector of arbitrarily many constants.

To build formulas, we consider a set of fluent predicate symbols
NF and a set of rigid predicate symbols NR, each of which takes at
most two arguments of sort object. Intuitively, fluents are properties
that may change due to actions, while rigids do not. In addition, we
use a special fluent predicate Poss(a) taking an action term as ar-
gument for expressing action preconditions. Apart from equality and
the usual logical connectives, formulas may contain subformulas of
the form ∃≤mx.α (at mostm individuals x satisfy α, wherem ∈ N),
∃≥mx.α (at least m individuals x satisfy α), 2α (α holds after any
number of actions) and [t]α (α holds after executing t, where t is an
action term). A formula is called fluent formula if it neither contains
2, nor [·], nor the predicate Poss, and mentions at most two non-free
variables. A fluent sentence is a fluent formula without free variables.

Semantics: Terms and formulas are interpreted w.r.t. a semantic
model called a world: Let NO and NA be the set of ground terms
(also called “standard names”) of sort object, and action, respec-
tively, and PF the set of all ground atoms of the form F (n1, . . . , nk)
for predicates F ∈ NF ∪NR. Moreover, let Z = NA

∗ be the set of
all finite sequences of ground action terms (including the empty se-
quence 〈〉). A worldw then maps ground atoms and action sequences
to truth values

w : PF ×Z → {0, 1}

respecting the rigidity constraint: if R is a rigid predicate, then for
all z, z′ ∈ Z ,w[R(~n), z] = w[R(~n), z′]. LetW denote the set of all
worlds. Given a world w ∈ W and a sentence α, we define w |= α
as w, 〈〉 |= α, where for any z ∈ Z:

1. w, z |= F (t1, . . . , tk) iff w[F (t1, . . . , tk), z] = 1;
2. w, z |= (t1 = t2) iff t1 and t2 are identical;
3. w, z |= α ∧ β iff w, z |= α and w, z |= β;
4. w, z |= ¬α iff w, z 6|= α;
5. w, z |= ∀x.α iff w, z |= αx

t for all t ∈ Nx;

6. w, z |= ∃≤mx.α iff |{t ∈ Nx | w, z |= αx
t }| ≤ m;

7. w, z |= ∃≥mx.α iff |{t ∈ Nx | w, z |= αx
t }| ≥ m;

8. w, z |= 2α iff w, z · z′ |= α for all z′ ∈ Z;
9. w, z |= [t]α iff w, z · t |= α;

Above,Nx refers to the set of all ground terms of the same sort as x.
We moreover use αx

t to denote the result of simultaneously replacing
all free occurrences of x by t.

Basic Action Theories: To encode a dynamic application domain,
we use a basic action theory (BAT), which is a set of formulas D =
D0 ∪ Dpre ∪ Dpost, where

1. D0, the initial theory, is a finite set of fluent sentences describing
the initial state of the world.

2. Dpre is a set of precondition axioms such that for any action func-
tion A ∈ NA there is an axiom of the form 2Poss(A(~y)) ≡ ϕ,
with ϕ being a fluent formula with free variables ~y.

3. Dpost is a finite set of successor state axioms (SSAs), one for
each fluent F ∈ NF , incorporating Reiter’s [21] solution to
the frame problem, and encoding the effects that actions have
on the different fluents. The SSA for a fluent F has the form
2[a]F (~x) ≡ γ+

F ∨ F (~x) ∧ ¬γ−F , where γ+
F and γ−F are fluent

formulas with free variables ~x and a.

In this paper we restrict ourselves to local-effect BATs, i.e. in all
SSAs the positive and negative effect conditions γ+

F and γ−F , respec-
tively, are disjunctions of formulas ∃~z[a = A(~y)∧φ], where A is an
action function, ~y contains ~x, ~z are the remaining variables of ~y, and
φ is a fluent formula with free variables ~y and at most two non-free
variables that are all of sort object. Intuitively, in a local-effect action
theory executing an actionA(~c) with arguments ~cmeans that a fluent
F (~d) can change its truth value for ~d only if ~d is contained in ~c.

2.2 Golog Programs
Given a BAT axiomatizing preconditions and effects of atomic ac-
tions, we now define syntax and semantics of complex actions. The
program expressions we consider here are the ones admitted by the
following grammar:

δ ::= 〈〉 | t | α? | δ1; δ2 | δ1|δ2 | δ1||δ2 | δ∗ (1)

That is we consider the fragment of CONGOLOG [11] that includes
the empty program 〈〉, primitive actions t (where t is a ground ac-
tion term), tests α? (where α is a fluent sentence), sequence, nonde-
terministic branching, concurrency, and nondeterministic iteration.
Note that thus also if statements and while loops are included:

if α then δ1 else δ2 endIf def
= [α?; δ1] | [¬α?; δ2] (2)

while α do δ endWhile def
= [α?; δ]∗;¬α? (3)

A GOLOG program P = (D, δ) is then given by a BAT D and a
program expression δ.

Program expressions are interpreted as follows. A configuration
〈z, δ〉 consists of an action sequence z ∈ Z and a program expres-
sion δ, where intuitively z is the history of actions that have already
been performed, while δ is the program that remains to be executed.

Definition 1 (Program Transition Semantics). Let P = (D, δ) be
a Golog program. The transition relation w−→ among configurations,
given a world w with w, 〈〉 |= D0, is defined by induction on the size
of δ as the least set satisfying

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉, if w, z |= Poss(t);
2. 〈z, δ1; δ2〉

w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉
w−→ 〈z · t, γ〉;

3. 〈z, δ1; δ2〉
w−→ 〈z ·t, δ′〉, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉

w−→ 〈z ·t, δ′〉;
4. 〈z, δ1|δ2〉

w−→ 〈z · t, δ′〉,
if 〈z, δ1〉

w−→ 〈z · t, δ′〉 or 〈z, δ2〉
w−→ 〈z · t, δ′〉;

5. 〈z, δ1||δ2〉
w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉;
6. 〈z, δ1||δ2〉

w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉
w−→ 〈z · t, δ′〉;

7. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉.

The set of final configurations Fw of a world w is the smallest set
such that

1. 〈z, α?〉 ∈ Fw if w, z |= α;
2. 〈z, δ1; δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
3. 〈z, δ1|δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;
4. 〈z, δ1||δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
5. 〈z, δ∗〉 ∈ Fw;
6. 〈z, 〈〉〉 ∈ Fw.

Let w−→∗ denote the reflexive and transitive closure of w−→. The set of
reachable subprograms sub(δ) is defined as follows:

sub(δ) := {δ′ | ∃w |= D, z ∈ Z s.t. 〈〈〉, δ〉 w−→∗〈z, δ′〉}

Lemma 1. Let δ be a program expression over ground actions. The
cardinality of sub(δ) is exponentially bounded in the size |δ| of δ.

To handle non-terminating, terminating and failing runs of a pro-
gram uniformly, we introduce two fresh 0-ary fluents Term and
Fail and two 0-ary action functions ε and f and include axioms
2Poss(ε) ≡ true and 2Poss(f) ≡ true in Dpre as well as axioms
2[a]Term ≡ a = ε∨Term and 2[a]Fail ≡ a = f∨Fail inDpost.
Termination and failure are thus represented through non-terminating
runs by having “sinks” that continue looping ε and f indefinitely.

Definition 2 (Transition System). Let P = (D, δ) be a Golog pro-
gram. The transition system TP = (Q,→, I) induced by P consists
of the set of states

Q := {(w, z, δ′) | w |= D, z ∈ Z, δ′ ∈ sub(δ)},

a transition relation→⊆ Q × Q, and a set of initial states I ⊆ Q,
which are defined as follows:

• I := {(w, 〈〉, δ) | w, 〈〉 |= D0}
• It holds that (w, z, ρ)→ (w, z · t, ρ′) if one of the following con-

ditions is satisfied:

1. 〈z, ρ〉 w−→ 〈z · t, ρ′〉.
2. 〈z, ρ〉 ∈ Fw, t = ε and ρ′ = 〈〉.
3. In case there is no 〈z′′, ρ′′〉 s.t. 〈z, ρ〉 w−→ 〈z′′, ρ′′〉 and 〈z, ρ〉 /∈
Fw, we have t = f and ρ′ = ρ.

3 Verification
3.1 The Verification Problem
First, we define the temporal logic used to specify properties of a
given program. We define the logic ES-C2-CTL∗, whose syntax is
the same as for propositional CTL∗ [9], but in place of propositions
we allow for fluent sentences:

Φ ::= α | ¬Φ | Φ1 ∧ Φ2 | EΨ (4)

Ψ ::= Φ | ¬Ψ | Ψ1 ∧Ψ2 | XΨ | Ψ1 U Ψ2 (5)

Above, α can be any fluent sentence. We call formulas according to
(4) state formulas, and formulas according to (5) path formulas. We
use the usual abbreviations AΨ for ¬E¬Ψ, FΨ for > U Ψ and GΨ
for ¬F¬Ψ. ES-C2-CTL∗ formulas are interpreted w.r.t. a transition
system of the form T = (Q,→, I), where→ is a right-total transi-
tion relation on the set of states Q, I ⊆ Q and each state s ∈ Q is
associated with a world ws and an action sequence zs ∈ Z . Clearly,
the transition system TP induced by a Golog program P satisfies
these properties.

A path π in T starting in a state s0 ∈ Q is of the form π =
s0s1s2 · · · with si → si+1 for all i = 0, 1, 2, The set of all
paths in T starting in s ∈ Q is denoted by Paths(s). For a given
i ∈ N, the suffix of a path π from position i on is denoted by π[i..].

Definition 3 (ES-C2-CTL∗ Semantics). Let Φ be a ES-C2-CTL∗

state formula and T = (Q,→, I) a transition system. Truth of Φ in
T in a state s ∈ Q, denoted by T, s |= Φ, is defined as follows:

• T, s |= α iff ws, zs |= α;
• T, s |= ¬Φ iff T, s 6|= Φ;
• T, s |= Φ1 ∧ Φ2 iff T, s |= Φ1 and T, s |= Φ2;
• T, s |= EΨ iff there exists π ∈ Paths(s) such that T, π |= Ψ.

Let Ψ be a ES-C2-CTL∗ path formula and T a transition system as
above. Truth of Ψ in T in a path π starting in some state s0 ∈ Q,
denoted by T, π |= Ψ, is defined as follows:

• T, π |= Φ iff T, s0 |= Φ;
• T, π |= ¬Ψ iff T, π 6|= Ψ;
• T, π |= Ψ1 ∧Ψ2 iff T, π |= Ψ1 and T, π |= Ψ2;
• T, π |= XΨ iff T, π[1..] |= Ψ;
• T, π |= Ψ1 U Ψ2 iff
∃k ≥ 0 : T, π[k..] |= Ψ2 and ∀j, 0 ≤ j < k : T, π[j..] |= Ψ1.

We write T |= Φ if T, s0 |= Φ for all s0 ∈ I .

We are now ready to define the verification problem:

Definition 4 (Verification Problem). Let P = (D, δ) be a Golog
program, TP = (Q,→, I) the corresponding transition system and
Φ an ES-C2-CTL∗ state formula. The formula Φ is valid in P if
TP |= Φ. The formula Φ is satisfiable in P if there exists a s0 ∈ I
such that TP , s0 |= Φ.

Note that the logic ES-C2-CTL∗ is expressive enough to encode
several variants of the verification problem. For example, one can
express global domain constraints as a conjunction ϕ of fluent sen-
tences. The problem of whether these constraints persist during the
execution of a program P corresponds to validity of the formula
AGϕ in the program P . Furthermore, the fluents Term and Fail
can be used to express facts about the termination or failing of a pro-
gram.

3.2 Deciding the Verification Problem
In general, the transition system induced by a GOLOG program is in-
finite. In order to obtain a decision procedure, we show that it is pos-
sible to construct a finite abstraction that preserves satisfiability of
ES-C2-CTL∗ formulas. We do this by defining an equivalence rela-
tion over the set of semantic models (worlds) and identifying the cor-
responding equivalence classes (called types). Since it can be shown
that there are only finitely many such classes for a given program and
since their computation reduces to a consistency check in the under-
lying decidable base logic C2, the abstract transition system can be
effectively computed, and standard model checking techniques can
be used to verify the given ES-C2-CTL∗ property.

3.2.1 Regression with Ground Actions

The first ingredient for our result is to use a technique presented in
[18, 17] for simplifying local-effect SSAs in presence of ground ac-
tions only. The idea is that it is sufficient to consider the ground in-
stantiations of SSAs obtained by substituting the action variable a
by each ground action term and simplifying using unique names for
constants and actions:

Lemma 2. Let D be a BAT, 2[a]F (~x) ≡ γ+
F ∨ F (~x) ∧ ¬γ−F ∈

Dpost the local-effect SSA for the fluent F (~x) and t = A(~c) a ground
action term. For the ground instantiated SSA for F (~x) w.r.t. t, given
as 2[t]F (~x) ≡ γ+

F

a

t
∨ F (~x) ∧ ¬γ−F

a

t
, it holds that both γ+

F

a

t
and

γ−F
a

t
are equivalent to disjunctions of the form

~x = ~c1 ∧ φ1 ∨ · · · ∨ ~x = ~cn ∧ φn, (6)

where the vectors of constants ~ci are contained in ~c and the formulas
φi are fluent sentences with i = 1, ..., n.

From now on we hence assume that in the ground instantiated SSAs,
the γ+

F

a

t
and γ−F

a

t
are of the form (6). We use the notation (~c, φ) ∈

γ+
F

a

t
and (~c, φ) ∈ γ−F

a

t
to express that there is a disjunct of the form

~x = ~c ∧ φ in γ+
F

a

t
or γ−F

a

t
, respectively.

Next, we define an effect function mapping a world w, a finite
action sequence z and a ground action t to a set of fluent literals if
Poss(t) is satisfied in the situation represented by w, z.

Definition 5 (Effect Function). Let D be a BAT over the signature
Σ and Lit the set of all positive and negative ground fluent atoms,
given as follows:

Lit := {F (~c),¬F (~c) | ∃t ∈ NA : (~c, φ) ∈ γ+
F

a

t or (~c, φ) ∈ γ−F
a

t }

The effect function E : W × Z × NA → 2Lit for P is a partial
function where

E(w, z, t) :={F (~c) ∈ Lit | ∃(~c, φ) ∈ γ+
F

a

t ∧ w, z |= φ} ∪

{¬F (~c) ∈ Lit | ∃(~c, φ) ∈ γ−F
a

t ∧ w, z |= F (~c) ∧ φ}

if w, z |= Poss(t), and otherwise undefined.

Next, we show that a simplified version of Reiter’s regression op-
erator can be defined w.r.t. an effect function, given a consistent
set of fluent literals and a fluent sentence. A subset E ⊆ Lit is
called non-contradictory if there is no fluent atom F (~c) such that
{F (~c),¬F (~c)} ⊆ E.

Definition 6 (Regression Operator). Let F (~v) be a formula where F
is a fluent and ~v a vector of variables or constants and let E ⊆ Lit
be non-contradictory. We define the regression of F (~v) through E,
written as [F (~v)]R(E), as follows:

[F (~v)]R(E) :=

(
F (~v) ∧

∧
¬F (~c)∈E

(~v 6= ~c)

)
∨

∨
F (~c)∈E

(~v = ~c)

If α is a fluent sentence, αR(E) denotes the result of replacing any
occurrence of a fluent F (~v) by [F (~v)]R(E).

Clearly, the regression result αR(E) is again a fluent sentence. Intu-
itively, if we want to know whether a formula α holds after executing
an action with effects E, it is sufficient to test whether the regressed
formula αR(E) is satisfied in the current situation.

Lemma 3. LetD be a BAT,w ∈ W withw |= D, α a fluent sentence
and t = A(~c) a ground action term. For all z ∈ Z , it holds that for
E = E(w, z, t), w, z |= αR(E) iff w, z · t |= α.

We note that an iterated application of the regression operator can
be reduced to an application of the operator for a single set of fluent
literals. For a set E ⊆ Lit we define ¬E := {¬l | l ∈ E} (modulo
double negation). For two non-contradictory subsets E,E′ of Lit
and a sentence α it holds that[

αR(E′)]R(E) ≡ αR(E\¬E′∪E′). (7)

3.2.2 A Finite Abstraction

Next, we identify a finite set of relevant fluent sentences (called con-
text) by considering all tests occurring in δ, all formulas defined as
preconditions for ground actions occurring in δ, and all formulas oc-
curring in the ground instantiated SSAs of D:

Definition 7 (Context for a Golog Program). Let P = (D, δ) be a
program. A context C forP is a finite set of fluent sentences satisfying
the following condition: Let α be a fluent sentence. If

• α is a test in δ,
• or α = ϕ~y

~c and there is a ground action A(~c) in δ with
2Poss(A(~y)) ≡ ϕ ∈ Dpre,

• or α = φ and there exists a ground action t in δ and a vector of
constants ~c such that (~c, φ) ∈ γ+

F

a

t
or (~c, φ) ∈ γ−F

a

t
,

• or α = F (~c) and there exists a ground action t in δ such that
(~c, φ) ∈ γ−F

a

t
for some φ,

then {α,¬α} ⊆ C. We require that C is closed under negation.

The following lemma shows some properties of C. Intuitively, if we
consider a situation consisting of a world and a finite sequence of
ground actions, then the effects of applying a ground action in that
situation depend only on the formulas in C that are satisfied or not
satisfied in that situation. Furthermore, whether a program configu-
ration is final in a world or has a successor configuration in this world
only depends on the context as well.

Lemma 4. Let C be a context for a program P = (D, δ). Let
w0, w1 ∈ W satisfying D and z0, z1 ∈ Z such that w0, z0 |=
α iff w1, z1 |= α for all α ∈ C.

1. Let t be a ground action that occurs in δ. It holds that
E(w0, z0, t) = E(w1, z1, t).

2. Let ρ be a program that contains only ground actions from δ and
all tests in ρ are contained in C.

(a) 〈z0, ρ〉 ∈ Fw0 iff 〈z1, ρ〉 ∈ Fw1 .

(b) 〈z0, ρ〉
w0−−→ 〈z0 · t, ρ′〉 iff 〈z1, ρ〉

w1−−→ 〈z1 · t, ρ′〉.

For the identification of equivalence classes, note that it is not suffi-
cient to consider only contexts within single states. We rather have to
make sure that equivalence is preserved when doing a transition. For
this purpose, we define types of worlds such that two worlds of the
same type will satisfy the same temporal properties. In the following
we use the notation 2Lit to denote the set of all non-contradictory
subsets of Lit . First, we need the notion of a set of type elements for
a program P and a context C for P:

TE(P, C) := {(α,E) | α ∈ C, E ∈ 2Lit}.

The type of a world is now defined as a set of type elements.

Definition 8 (Type of a World). Let P be a program, C a context for
P and w a world with w |= D. The type of w w.r.t. P and C is:

type(w) := {(α,E) ∈ TE(P, C) | w, 〈〉 |= αR(E)}.

Example 1. Consider a single fluent OnTable(x), an action
remove(x) and an object constant b. The initial theory is given by
D0 = {OnTable(b)}, Dpost contains a single SSA

2[a]OnTable(x) ≡ OnTable(x) ∧ ¬a = remove(x).

As a context for the BAT D and program remove(b) we choose the
following set consisting of two formulas (abbreviated by αb and α∃,
respectively) and their negations

C = {αb : (¬)OnTable(b), α∃ : (¬)∃x.OnTable(x)}.

We consider two worlds w0, w1 such that

w0, 〈〉 |= OnTable(b) and

w0, 〈〉 6|= OnTable(b′) for all b′ ∈ NO with b 6= b′

and in w1 it holds that

w1, 〈〉 |= OnTable(b) and

w1, 〈〉 |= OnTable(b′) for some b′ ∈ NO with b 6= b′.

We have to consider three non-contradictory sets of literals L0 = ∅,
L+ = {OnTable(b)} and L− = {¬OnTable(b)}. The different
types of w0 and w1 are given by:

type(w0) := {(αb, L0), (α∃, L0), (αb, L
+), (α∃, L

+),

(¬αb, L
−), (¬α∃, L−)};

type(w1) := {(αb, L0), (α∃, L0), (αb, L
+), (α∃, L

+),

(¬αb, L
−), (α∃, L

−)}.

In this simple example b is the only object known to be on the table
initially and it is the only object that can be affected by an action. But
nevertheless, since we have only incomplete information about the
initial world, we also have to consider possibly unknown objects. For
example, we don’t know whether there is exactly one object on the
table or not. As we see here, the type of w1 is different from the type
of w0, because the formula ∃x.OnTable(x) in context C remains
true in w1 after removing the object b.

Lemma 5. Consider two worlds w,w′ and their types w.r.t. P and
C. It holds that:

1. Let z ∈ N ∗A be a sequence of ground actions that occur in δ and
t a ground action occurring in δ. If type(w) = type(w′), then
E(w, z, t) = E(w′, z, t).

2. Let α ∈ C and z ∈ N ∗A a sequence of ground actions that occur
in δ. If type(w) = type(w′), then w, z |= α iff w′, z |= α.

As a consequence of this lemma we can determine E(w, z, t) based
on type(w). Consider a sequence z = t0t1 · · · tn of ground actions
in δ. Using the equivalence (7) we can accumulate the set of effects
of each prefix of z into a single set of literals. The accumulated set
of effects for z in world w is denoted by E(w, z). It clearly holds
that w, z |= α iff w, 〈〉 |= αR(E(w,z)) for any fluent sentence α ∈ C.
The equivalence relation on states of the transition system can thus
be defined as follows:

Definition 9. Consider P , C and the transition system TP =
(Q,→, I). Let (w, z, ρ), (w′, z′, ρ′) be states in Q. (w, z, ρ) and
(w′, z′, ρ′) are equivalent, written as (w, z, ρ) ' (w′, z′, ρ′) iff
type(w) = type(w′) and E(w, z) = E(w′, z′) and ρ = ρ′.

Equivalent states are thus indistinguishable by temporal properties:

Lemma 6. Let C be a context for the program P with the corre-
sponding transition system TP = (Q,→, I). Let s0, s1 ∈ Q with
s0 ' s1.

1. If there exists a state s′0 with s0 → s′0 and zs′0 = zs0 ·t, then there
exists a state s′1 with s1 → s′1, zs′1 = zs1 · t and s′0 ' s′1.

2. If there exists a state s′1 with s1 → s′1 and zs′1 = zs1 ·t, then there
exists a state s′0 with s0 → s′0, zs′0 = zs0 · t and s′0 ' s′1.

Basically, this means that the relation ' on the state space Q gives
us a bisimulation w.r.t. the formulas in C. Therefore, the following
lemma is a direct consequence of this property.

Lemma 7. Let C be a context for a program P with the transition
system TP = (Q,→, I) and Φ a ES-C2-CTL∗ formula that contains
only fluent sentences from C. Let s, s′ ∈ I and s ' s′. There exists a
path π starting in s with TP , π |= Φ iff there exists a run π′ starting
in s′ with TP , π′ |= Φ.

With the above, it suffices to consider the quotient transition sys-
tem TP/' of TP w.r.t. '. The equivalence classes [w, z, ρ]' (corre-
sponding to states in the quotient transition system) can be character-
ized by the type type(w), the subsetE(w, z) of Lit and ρ ∈ sub(δ).
There are only finitely many world types, subsets of Lit and reach-
able subprograms of δ. Hence, the quotient transition system is finite.

To show how the quotient transition system can be used to decide
whether TP |= Φ for a ES-C2-CTL∗ formula Φ we use the notion
of propositional abstraction. Consider the transition system TP =
(Q,→, I) of a program P , a ES-C2-CTL∗ state formula Φ and a
context C for P that also contains all fluent sentences occurring in Φ.
For any α ∈ C we introduce an atomic proposition α̂. We define the
relevant set of atomic proposition Ĉ := {α̂ | α ∈ C}. Let Φ̂ denote
the propositional CTL∗ formula that is obtained from Φ by replacing
any fluent sentence in Φ by the corresponding atomic proposition.
Further, we introduce a labeling L̂C that labels the states in TP/'

with subsets of Ĉ as follows:

L̂C([w, z, ρ]') := {α̂ | (α,E(w, z)) ∈ type(w)}.

L̂C([s]') is uniquely defined since all states in the equivalence class
[s]' have the same context label. Together with the labeling L̂C , the
quotient transition system TP/' can be viewed as a finite proposi-
tional transition system. To verify whether TP/' |= Φ̂, we can now
apply standard model checking techniques for CTL∗. It remains to
be shown how the quotient transition system can be computed.

Consider a program P = (D, δ) and a context C. First, we guess
a set of type elements τ ⊆ TE(P, C) such that for all α ∈ C and
for all non-contradictory E ⊆ Lit , it holds that either (α,E) ∈ τ
or (¬α,E) ∈ τ . Using the regression operator we test whether τ is
indeed a type of a world that satisfies the BAT. This is done by check-
ing consistency of the C2 KB, given byD0∪{αR(E) | (α,E) ∈ τ}.
If this KB is consistent, then there exists a world w, 〈〉 |= D0

with type(w) = τ . We get that (τ, ∅, δ) represents the initial state
[(w, 〈〉, δ)]' in the quotient transition system TP/'. The possible
images of the effect function and the labels of all possible reachable
state are encoded in the type τ . Therefore, the reachable fragment of

the quotient transition system from the initial state (τ, ∅, δ) can be
easily obtained from the type representation τ . For more details we
refer to the technical report [22].

Having this finite abstraction of the transition system, the verifi-
cation problem boils down to a propositional CTL∗ model checking
problem, as described above. The complexity of this decision pro-
cedure is mainly determined by the complexity of the test whether
a set of type elements τ represents the type of a world. To do this
we have to test consistency of an exponentially large C2 knowl-
edge base. Knowledge base consistency in C2 can be decided in
NEXPTIME [20]. Therefore, checking whether τ is a type can be
done in 2-NEXPTIME. It turns out that 2-NEXPTIME is also an up-
per bound for the overall complexity.

Theorem 1. Satisfiability of an ES-C2-CTL∗ formula Φ in a Golog
program P = (D, δ) is decidable in 2-NEXPTIME.

4 Related Work
Apart from what was discussed in the introduction, other researchers
have looked at decidable verification in the context of the Situa-
tion Calculus. One line of research is followed by De Giacomo,
Lespérance and Patrizi [8] who show decidability for first-order µ-
calculus properties for a class of BATs that only admit finitely many
instances of fluents to hold. In contrast, our approach also allows
fluents with infinite extensions. Moreover, their notion of bounded-
ness is a semantical condition that is in general undecidable to check,
whereas our approach relies on purely syntactical restrictions. In re-
lated work, Hariri et al. [14] consider the verification of µ-calculus
properties in the context of light-weight DLs, where new information
may be added at any time. Among other things, they show that decid-
ability obtains if the added information is bounded. But in contrast
to the action theories we consider, the frame problem is not solved in
their underlying action formalism, i.e. the actions are memoryless.

5 Conclusion
We presented results on the verification of temporal properties for
GOLOG programs. We have extended previous decidability results as
presented in [7] and [4] to a fragment that uses the expressive, yet de-
cidable fragmentC2 of FOL as base logic, that allows for local-effect
actions with arbitrarily many arguments, and that admits properties
expressed in the branching-time temporal logics CTL∗ over C2 ax-
ioms. Decidability is obtained by constructing a finite abstraction of
the infinite transition system induced by the GOLOG program and its
action theory. Note that the restrictions we impose (decidable base
logic, ground actions only, and local-effects) are all necessary in the
sense that we can show [22] that dropping any one of them would
instantly render the verification problem undecidable again.

There are many directions for future work. We plan to further in-
vestigate the exact computational complexity and evaluate the ap-
proach practically by means of an implementation. It would also be
interesting to extend our results in terms of expressiveness, e.g. by
considering SSAs that go beyond local-effect theories, or by re-
introducing non-ground actions in a limited, decidable fashion.

Acknowledgements
This work was supported by the German National Science Founda-
tion (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelli-
gent Systems (http://www.hybrid-reasoning.org).

REFERENCES
[1] The Description Logic Handbook: Theory, Implementation, and Ap-

plications, eds., Franz Baader, Diego Calvanese, Deborah L. McGuin-
ness, Daniele Nardi, and Peter F. Patel-Schneider, Cambridge Univer-
sity Press, 2003.

[2] Franz Baader, Hongkai Liu, and Anees ul Mehdi, ‘Verifying properties
of infinite sequences of description logic actions’, in Proc. ECAI 2010,
(2010).

[3] Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler, and Frank
Wolter, ‘Integrating description logics and action formalisms: First re-
sults’, in Proc. AAAI 2005, (2005).

[4] Franz Baader and Benjamin Zarrieß, ‘Verification of Golog programs
over description logic actions’, in Proc. FroCoS’13, (2013).

[5] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Ger-
hard Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun,
‘Experiences with an interactive museum tour-guide robot’, Artificial
Intelligence, 114(1–2), 3–55, (1999).

[6] Jens Claßen and Gerhard Lakemeyer, ‘A logic for non-terminating
Golog programs’, in Proc. KR 2008, (2008).

[7] Jens Claßen, Martin Liebenberg, and Gerhard Lakemeyer, ‘On decid-
able verification of non-terminating Golog programs’, in Proc. NRAC
2013, (2013).

[8] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi, ‘Bounded
situation calculus action theories and decidable verification’, in
Proc. KR 2012, (2012).

[9] E. Allen Emerson and Joseph Y. Halpern, “‘sometimes” and “not never”
revisited: on branching versus linear time temporal logic’, J. ACM,
33(1), 151–178, (1986).

[10] Alexander Ferrein and Gerhard Lakemeyer, ‘Logic-based robot con-
trol in highly dynamic domains’, Robotics and Autonomous Systems,
(2008).

[11] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121(1–2), 109–169, (2000).

[12] Giuseppe De Giacomo, Evgenia Ternovska, and Raymond Reiter,
‘Non-terminating processes in the situation calculus’, in Working Notes
of “Robots, Softbots, Immobots: Theories of Action, Planning and Con-
trol”, AAAI’97 Workshop, (1997).

[13] Yilan Gu and Mikhail Soutchanski, ‘A description logic based situation
calculus’, Annals of Mathematics and Artificial Intelligence, 58(1–2),
3–83, (2010).

[14] Babak Bagheri Hariri, Diego Calvanese, Marco Montali, Giuseppe De
Giacomo, Riccardo De Masellis, and Paolo Felli, ‘Description logic
knowledge and action bases’, Journal of Artificial Intelligence Re-
search, 46, 651–686, (2013).

[15] Gerhard Lakemeyer and Hector J. Levesque, ‘A semantic characteri-
zation of a useful fragment of the situation calculus with knowledge’,
Artificial Intelligence, 175(1), 142–164, (2010).

[16] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, Journal of Logic Programming, 31(1–3), 59–83,
(1997).

[17] Yongmei Liu and Gerhard Lakemeyer, ‘On first-order definability and
computability of progression for local-effect actions and beyond’, in
Proc. IJCAI 2009, (2009).

[18] Yongmei Liu and Hector J. Levesque, ‘Tractable reasoning with incom-
plete first-order knowledge in dynamic systems with context-dependent
actions’, in Proc. IJCAI 2005, (2005).

[19] John McCarthy and Patrick Hayes, ‘Some philosophical problems from
the standpoint of artificial intelligence’, in Machine Intelligence 4, 463–
502, American Elsevier, (1969).

[20] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera, ‘Complexity re-
sults for first-order two-variable logic with counting’, SIAM Journal on
Computing, 29(4), 1083–1117, (2000).

[21] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[22] Benjamin Zarrieß and Jens Claßen, ‘On the decidability of verifying
LTL properties of Golog programs’, LTCS-Report 13–10, Chair of Au-
tomata Theory, TU Dresden, Dresden, Germany, (2013). Extended ver-
sion. See http://lat.inf.tu-dresden.de/research/reports.html.

