
On the Verification of Very Expressive Temporal
Properties of Non-terminating Golog Programs

Jens Claßen and Gerhard Lakemeyer1

Abstract. The agent programming language GOLOG and the un-
derlying Situation Calculus have become popular means for the mod-
elling and control of autonomous agents such as mobile robots. Al-
though such agents’ tasks are typically open-ended, little attention
has been paid so far to the analysis of non-terminating GOLOG con-
trol programs. Recently we therefore introduced a logic that allows
to express properties of Golog programs using operators from tem-
poral logics while retaining the full first-order expressiveness of the
Situation Calculus. Combining ideas from classical symbolic model
checking with first-order theorem proving we presented a verification
method for a restricted subclass of temporal properties. In this paper,
we extend this work by considering arbitrary temporal formulas. Our
algorithm is inspired by classical CTL∗ model checking, but intro-
duces techniques to cope with arbitrary first-order quantification.

1 INTRODUCTION

The GOLOG [13, 6] family of agent programming languages and
its underlying logic, the Situation Calculus [17, 16], have become
popular means for the control of autonomous agents such as mobile
robots. Typically, the task of such an agent is an open-ended one,
i.e. there is no predefined goal or terminal state that the agent tries to
reach eventually, but (at least ideally) the robot works indefinitely.

As a simple example, adapted from [8, 4], consider a mobile robot
whose task it is to serve coffee to the people in an office environment.
A program for this robot might look like this:

loop : if ¬Empty(queue)
then (πp)selectRequest(p);

pickupCoffee; bringCoffee(p)
else wait

That is there is an infinite loop where at each cycle, if the robot’s
current queue is not empty, it selects the next request (which comes
from person p) to be served next, gets a cup of coffee and brings it
to p. Otherwise, the robot waits for one cycle. Requests from people
may arrive at any time during the execution of the program.

Before actually deploying such a program on the robot and execut-
ing it in the real world, it is often desirable to verify that it meets cer-
tain requirements such as safety, liveness and fairness properties, for
example that “every request will eventually be served by the robot”
or whether “it is possible that no request is ever served.”

Somewhat surprisingly, the analysis and verification of non-
terminating GOLOG programs has so far received little attention. One
exception is the above mentioned work by De Giacomo, Ternovska
and Reiter [8]. They formalize properties of programs using fixpoint

1 RWTH Aachen University, Germany, 〈classen|gerhard〉@cs.rwth-aachen.de

operators expressed by formulas of second-order logic, and then do a
manual, meta-theoretic proof to show that their program satisfies the
given properties. As such proofs tend to be tedious and error-prone,
it would be much more preferable to do an automated verification.

On the other hand, over the last decades, a huge variety of power-
ful verification methods and systems have been developed in the field
of model checking [2, 1, 10]. Their application is particularly popu-
lar in the area of hardware verification and software engineering, and
it seems more than natural to try to adapt and exploit the available
results for the verification of GOLOG agents. However, for tractabil-
ity and decidability, the methods and their underlying formalisms are
typically restricted to propositional or very limited first-order expres-
siveness and, as the term “model checking” suggests, work on an
explicit, finite model of the system. Combining or interfacing an ex-
isting model-checking tool with a GOLOG system thus unavoidably
means a drastic loss in expression and modelling power, which is
somewhat undesirable as its first-order expressiveness is usually the
reason why the Situation Calculus was chosen in the first place. It
would be much more desirable to be able to do the verification within
the very same, expressive formalism that is used for the representa-
tion and actual control of the agent.

For these reasons, in [4] we introduced a new logic called ESG
that allows to express and reason about properties of both terminat-
ing and non-terminating GOLOG programs. It is based on the modal
Situation Calculus variant ES [11], but among other things extends it
by a new modal construct [[δ]]φ which intuitively means that all pos-
sible execution traces of the program δ (i.e. sequences of primitive
actions conforming to δ) satisfy φ, where φ may contain operators
known from temporal logics. If δ is our example program, then the
two properties stated above can be expressed as follows:

∀p[[δ]]G(Occ(requestCoffee(p)) ⊃ FOcc(selectRequest(p))) (1)

〈〈δ〉〉G¬∃p(Occ(selectRequest(p))) (2)

(1) says that for all possible executions of δ ([[δ]]), it is always (G) the
case that whenever some requestCoffee(p) action occurs, then there
will eventually (F) be some selectRequest(p). The 〈〈δ〉〉 is the exis-
tential counterpart of [[δ]], thus (2) says that there is some execution
of δ such that a selectRequest(p) never occurs.

[4] provides a sound method for verifying a limited class of pro-
gram properties that resembles CTL. This means that there it is re-
quired that the path quantifier 〈〈δ〉〉 is directly followed by a temporal
operator like G or F. Formula (2) above is an example of such a
property, whereas (1) is not, as temporal operators appear nested and
are combined with other subformulas through logical connectives.

The latter is representative for a broader class of properties that
resembles CTL∗, i.e. where the usage of temporal operators within a
path quantifier is unrestricted and we may make free use of logical

connectives, including first-order quantification. Many of the typi-
cal properties one may want to verify for a non-terminating agent
are only expressible in this manner, most importantly liveness and
fairness conditions such as the above “every request will eventually
be served”, or “whenever the battery is low, it will get recharged in
time”, or “the floor gets cleaned infinitely often” etc. In this paper,
we therefore propose a verification algorithm for this more general
class of properties. As for the less general method described in [4],
there is of course no free lunch here: dealing with arbitrary first-order
action theories and properties, and thus resorting to first-order theo-
rem proving, comes at the price of losing decidability. The algorithm
we present is sound, but not guaranteed to terminate.

The paper is organized as follows. Section 2 recapitulates the ESG
language definition, and Section 3 does so for the ESG equivalent of
Reiter’s basic action theories and regression operator. Our main con-
tribution is in Section 4 where we present our verification algorithm.
We discuss related work in Section 5, after which we conclude.

2 THE LOGIC ESG
2.1 Syntax
The language is a first-order2 modal dialect with equality and two
sorts object and action. For each sort, there are countably many stan-
dard names n1, n2, . . . which are syntactically treated like constants.
Predicate and function symbols of any arity can be either rigid or flu-
ent. The latter vary as the result of actions, while the former do not.
The fluents include the unary predicates Poss, Occ, and Exo.

The logical connectives are ∧, ¬, ∀, together with these modal
operators: X, U, [δ], and [[δ]], where δ is a program as defined below.
Other connectives like ∨,⊃,⊂,≡, and ∃ are the usual abbreviations.

Terms are formed in the usual way. By a primitive term we mean
one of the form h(n1, . . . , nk) where h is a (fluent or rigid) function
symbol and all of the ni are standard names. Formulas are divided
into two classes, situation and trace formulas. The former express
properties of situations, the latter are used to describe properties of
finite and infinite action sequences. The set of all formulas is defined
to be the least set such that for the situation formulas:

1. If t1, . . . , tk are terms, and H is a k-ary predicate symbol then
H(t1, . . . , tk) is an (atomic) situation formula;

2. If t1 and t2 are terms, then (t1 = t2) is a situation formula;
3. If δ is a program, α is a situation formula and φ is a trace formula,

then [δ]α and [[δ]]φ are situation formulas;
4. If α and β are situation formulas, and v is a first-order variable,

then the following are also situation formulas: (α∧β), ¬α, ∀v.α.

For the trace formulas:

1. Every situation formula is a trace formula;
2. If φ and ψ are trace formulas and v is a first-order variable, then
φ ∧ ψ, ¬φ, ∀v.φ, Xφ and φ U ψ are also trace formulas.

We read [δ] as “α holds after all possible executions of δ”, [[δ]]φ as
“φ holds for all possible executions of δ”, Occ(t) as “t was the last
action”, Xφ as “φ holds after the next action” and φ U ψ as “φ will
hold until ψ holds”. To obtain the duals of [δ]α and [[δ]]α, we let 〈δ〉α
stand for ¬[δ]¬α and 〈〈δ〉〉α for ¬[[δ]]¬α.

Formulas without free variables are called sentences. A primitive
sentence is a predicate whose arguments are standard names. We call

2 The second-order features from [4] are unnecessary for the purpose of this
paper and therefore omitted.

a formula without [δ], [[δ]], Poss and Exo a fluent formula. A bounded
formula does not contain [[δ]] and contains only [t] constructs whose
t is an atomic action.

Finally, the set of programs is given by below grammar:

δ ::= t | α? | (δ1; δ2) | (δ1|δ2) | πx.δ | (δ1||δ2) | δ∗

Here, t is any (not necessarily ground) term of sort action and α a
bounded formula. In the presented order, the constructs mean a prim-
itive action, a test, sequence of programs, nondeterministic choice
between programs, nondeterministic choice of argument, concurrent
(interleaved) execution of programs, and nondeterministic iteration.
Further control structures are defined by:

if α then δ1 else δ2 endIf def
= α?; δ1 | ¬α?; δ2 (3)

while α do δ endWhile def
= (α?; δ)∗;¬α? (4)

loop δ def
= while > do δ endWhile (5)

We also abbreviate loop δ as δω . We use > to denote truth, defined
as ∀x.(x = x), and ⊥ for falsity, i.e. ¬>. The usual CTL∗ path
quantifiers can be introduced by defining Eφ as 〈〈anyω〉〉φ and Aφ
as [[anyω]]φ, where any is shorthand for πa.a. Further we abbreviate
(>U φ) as Fφ (“eventually”) and¬F¬φ as Gφ (“always”). The �α
construct from [11] is understood as shorthand for AGα.

2.2 Semantics
To determine the truth of a sentence, we need a world w which deter-
mines the truth values of primitive sentences and co-referring stan-
dard names for primitive terms after any sequence of actions. For-
mally, a world w ∈ W is any function from the primitive sentences
andZ to {0, 1}, and from the primitive terms andZ toN (preserving
sorts), and satisfying the rigidity constraint: if r is a rigid function or
predicate symbol, then w[r(n1, . . . , nk), z] = w[r(n1, . . . , nk), z′]
for all z, z′ ∈ Z . Here, N denotes the set of all standard names and
Z the set of all finite sequences of standard names of sort action.

The idea of co-referring standard names is extended to arbitrary
ground terms as follows. Given a variable-free term t, a world w,
and an action sequence z, we define |t|zw by:

1. If t ∈ N , then |t|zw = t;
2. |h(t1, . . . , tk)|zw= w[h(n1, . . . , nk), z], where ni = |ti|zw.

Now given w ∈ W , we define w |= α for situation formulas α as
w, 〈〉 |= α, where for any sequence z ∈ Z:

1. w, z |= H(t1, . . . , tk) iff
w[H(n1, . . . , nk), z] = 1, where ni = |ti|zw;

2. w, z |= (t1 = t2) iff n1 and n2 are identical, where ni = |ti|zw;
3. w, z |= Occ(t) iff z = z′ · n, where n = |t|zw;
4. w, z |= α ∧ β iff w, z |= α and w, z |= β;
5. w, z |= ¬α iff w, z 6|= α;
6. w, z |= ∀v.α iff w, z |= αvn for all n ∈ Nv;
7. w, z |= [[δ]]φ iff for all τ ∈ ||δ||w(z), w, z, τ |= φ;
8. w, z |= [δ]α iff for all finite z′ ∈ ||δ||w(z), w, z · z′ |= α.

Nv refers to the set of standard names of the same sort as v. αvn
means α with every free occurrence of v replaced by n. ||δ||w(z),
which is defined below, maps, given w and z, a program to a set of
program traces, where a trace can be a finite or infinite sequence of
action standard names. Rule 8 only requires that α holds after all
finite sequences for [δ]α to be true, which implies that any formula

is vacuously true “after” the execution of a non-terminating program
δω . On the other hand, in rule 7, the trace formula φ must hold for
any trace τ , be it finite or not. The truth of trace formulas is given by:

1. w, z, τ |= α iff w, z |= α, where α is a situation formula;
2. w, z, τ |= φ ∧ ψ iff w, z, τ |= φ and w, z, τ |= ψ;
3. w, z, τ |= ¬φ iff w, z, τ 6|= φ;
4. w, z, τ |= ∀v.φ iff w, z, τ |= φvn for all n ∈ Nv;
5. w, z, τ |= Xφ iff τ = n · τ ′ and w, z · n, τ ′ |= φ;
6. w, z, τ |= φ U ψ iff there is z′ such that τ = z′ · τ ′

and w, z · z′, τ ′ |= ψ and for all z′′ 6= z′ with z′ = z′′ · z′′′,
w, z · z′′, z′′′ · τ ′ |= φ.

When Σ is a set of sentences and α is a sentence, we write Σ |= α
(read: Σ logically entails α) to mean that for every w, if w |= α′

for every α′ ∈ Σ, then w |= α. Finally, we write |= α (read: α is
valid) to mean {} |= α. As a notational convention, we will in the
following always use (possibly with sub- or superscripts) z for finite
sequences, π for infinite ones and τ for arbitrary traces.

2.2.1 The Meaning of Programs

Due to limited space, we will only repeat the formal definition of
the program semantics (with slight notational adaptations). For more
detailed explanations, the interested reader is referred to [4].

A configuration 〈w, z, δ〉 consists of a world w, a sequence of
(already performed) actions z, and a program δ (remaining to be ex-
ecuted). The set of final configurations F is the least set satisfying:

1. 〈w, z, α?〉 ∈ F if w, z |= α;
2. 〈w, z, δ1; δ2〉 ∈ F if 〈w, z, δ1〉 ∈ F and 〈w, z, δ2〉 ∈ F ;
3. 〈w, z, δ1|δ2〉 ∈ F if 〈w, z, δ1〉 ∈ F or 〈w, z, δ2〉 ∈ F ;
4. 〈w, z, πx.δ〉 ∈ F if 〈w, z, δxn〉 ∈ F for some n ∈ Nx;
5. 〈w, z, δ∗〉 ∈ F ;
6. 〈w, z, δ1||δ2〉 ∈ F if〈w, z, δ1〉 ∈ F and 〈w, z, δ2〉 ∈ F .

The transition relation→ among configurations is given by:

1. 〈w, z, t〉 → 〈w, z · n, nil〉 if n = |t|zw;
2. 〈w, z, δ1; δ2〉 → 〈w, z · n, γ; δ2〉 if 〈w, z, δ1〉 → 〈w, z · n, γ〉;
3. 〈w, z, δ1; δ2〉 → 〈w, z · n, δ′〉

if 〈w, z, δ1〉 ∈ F and 〈w, z, δ2〉 → 〈w, z · n, δ′〉;
4. 〈w, z, δ1|δ2〉 → 〈w, z · n, δ′〉

if 〈w, z, δ1〉 → 〈w, z · n, δ′〉 or 〈w, z, δ2〉 → 〈w, z · n, δ′〉;
5. 〈w, z, πx.δ〉 → 〈w, z · n, δ′〉

if 〈w, z, δxn′〉 → 〈w, z · n, δ′〉 for some n′ ∈ Nx;
6. 〈w, z, δ∗〉 → 〈w, z · n, γ; δ∗〉 if 〈w, z, δ〉 → 〈w, z · n, γ〉;
7. 〈w, z, δ1||δ2〉 → 〈w, z · n, δ′||δ2〉 if 〈w, z, δ1〉 → 〈w, z · n, δ′〉;
8. 〈w, z, δ1||δ2〉 → 〈w, z · n, δ1||δ′〉 if 〈w, z, δ2〉 → 〈w, z · n, δ′〉.

where nil is shorthand for >?. Note that the above is basically the
transition semantics of CONGOLOG [6], but with the slight modifi-
cation that tests are not viewed as transitions like physical actions,
but as conditions under which a transition may be taken or the pro-
gram may terminate. Thus, it is not necessary to define synchronized
variants of the if and while constructs as in [6], but we can use the
definitions (3) and (4) given in Section 2.1.

Let Pre(π) mean the set of all prefixes of a trace π and ∗→ be the
reflexive transitive closure of→. The set ||δ||w(z) of execution traces
of the program δ, given w, z, then is

{z′ | 〈w, z, δ〉 ∗→ 〈w, z · z′, δ′〉 and 〈w, z · z′, δ′〉 ∈ F} ∪
{π | ∀z′∈Pre(π), 〈w, z, δ〉 ∗→ 〈w, z · z′, δ′〉 and 〈w, z · z′, δ′〉 6∈ F}.

3 BASIC ACTION THEORIES AND
REGRESSION

A basic action theory (BAT) Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σexo ∪ ΣUNA

describes the dynamics of a specific application domain, where

1. Σ0, the initial database, is a finite set of fluent sentences describ-
ing the initial state of the world. In the coffee robot example, we
might have Σ0 = {¬HoldingCoffee, Empty(queue)}.

2. Σpre is a precondition axiom of the form �Poss(a) ≡ π, with π
being a fluent formula, whose only free variable is a, describing
precisely the conditions under which a is a possible action:

�Poss(a) ≡ a = wait ∨
∃p. a = requestCoffee(p) ∧ ¬Full(queue) ∨
∃p. a = selectRequest(p) ∧ IsFirst(queue, p) ∨

a = pickupCoffee ∧ ¬HoldingCoffee ∨
∃p. a = bringCoffee(p) ∧HoldingCoffee

3. Σpost is a finite set of successor state axioms (SSAs), one for each
fluent relevant to the application domain, incorporating Reiter’s
[17] solution to the frame problem, and encoding the effects the
actions have on the different fluents. The SSA for a fluent predi-
cate has the form �[a]F (~x) ≡ γF , whereas the one for a func-
tional fluent is of the form �[a]f(~x) = y ≡ γf , where γF is a
fluent formula with free variables ~x, and γf one with free variables
among ~x and y. In the coffee robot domain, we have a relational
fluent HoldingCoffee and a functional fluent queue:

�[a]HoldingCoffee ≡ a = pickupCoffee ∨
HoldingCoffee ∧ ¬∃p. a = bringCoffee(p),

�[a]queue = y ≡
∃p. a = requestCoffee(p) ∧ Enqueue(queue, p, y) ∨
∃p. a = selectRequest(p) ∧Dequeue(queue, p, y) ∨
queue = y ∧ ¬∃p (a = requestCoffee(p) ∨

a = selectRequest(p))

4. Σexo is the exogenous actions axiom, having the form �Exo(a) ≡
χ, where χ is again a fluent formula with the free variable a. It
is used to express the necessary and sufficient conditions under
which an action is exogenous, i.e. not controlled by the agent, but
by “nature”. In our example, we have only one such action, thus
the axiom is �Exo(a) ≡ ∃p.a = requestCoffee(p). If δexo =
(πa.Exo(a)?; a)ω and δctrl is the actual control program of the
agent, we use (δctrl||δexo) in our further analysis.

5. ΣUNA are unique names for actions axioms.

For a queue with size limit k, we use a simple encoding that repre-
sents the queue’s state by a term of the form list(p1, . . . , pk), where
empty positions are represented by having pi = e , e being a distin-
guished standard name. Above we made use of these abbreviations:

IsFirst(q, p)
def
= (p 6= e) ∧ ∃p2 . . .∃pk. q = list(p, p2, . . . , pk),

Empty(q)
def
= q = list(e, . . . , e),

Full(q)
def
= ∃x1 . . .∃xk.

∧k
i=1(xi 6= e) ∧ q = list(x1, . . . , xk),

Enqueue(qo, p, qn)
def
= (p 6= e) ∧∨k−1

i=0 ∃x1 . . .∃xi.
∧i
j=1(xi 6= e) ∧

qo = list(x1, . . . , xi, e, . . . , e) ∧
qn = list(x1, . . . , xi, p, e, . . . , e),

Dequeue(qo, p, qn)
def
= (p 6= e) ∧ ∃x2 . . .∃xk.

qo = list(p, x2, . . . , xk) ∧ qn = list(x2, . . . , xk, e)

Our algorithm relies on the ES equivalent of Reiter’s regression oper-
ator. The idea behind it is that whenever we encounter a subformula
of the form [t]F (~x), where t is a primitive action, we may substitute
it by γF , the right-hand side of the successor state axiom of F . This
is sound in the sense that the axiom defines the two expressions to
be equivalent. The result of the substitution will be true in exactly
the same worlds satisfying the action theory Σ as the original one,
but contains one less modal operator [t]. Similarly, [t]Occ(t′) is re-
placed by (t = t′) and Poss(t) and Exo(t) by the right-hand sides
of the corresponding axiom. Iteratively applying such substitutions,
we get a fluent formula that describes exactly the conditions on the
initial situation under which the original, non-static formula holds:

Theorem 1 Let Σ be a BAT and α a bounded sentence. ThenR[α],
the regression of α, is a fluent sentence and Σ |= α iff Σ0 |= R[α].

4 PROGRAM VERIFICATION
Verification of non-terminating programs means checking whether
some BAT Σ satisfies a property expressed by a formula of ESGCTL∗ :

α ::= (t1 = t2) | F (~t) | ¬α | α ∧ α | ∃x.α | 〈〈δ〉〉ϕ

Of course the 〈〈δ〉〉ϕ subformulas, where we assume that the δ is a
non-terminating program of the form δω1 || · · · ||δωk , are the most inter-
esting part. The idea is to replace them by fluent formulas that are
equivalent wrt Σ and then check the result against Σ0, which can be
done using standard first-order theorem proving. [4] provided verifi-
cation methods only for the case where the ϕ above was restricted to
be a temporal subformula (φ U ψ) or Xφ without nested temporal
operators. Here we allow ϕ to be any formula of ESGLTL:

ϕ ::= (t1 = t2) | F (~t) | Occ(t) | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ |Xϕ | ϕ U ϕ

4.1 Characteristic Graphs
We encode the space of reachable program configurations by a char-
acteristic graph Gδ for a given program δ. The nodes V in such a
graph are of the form 〈δ′, φ〉, denoting the remaining program of
a current run and the condition under which execution may termi-
nate there. v0 is the initial node. Edges in E are labeled with tuples
π~x : t/ψ, where ~x is a list of variables (if it is empty, we omit the
leading π), t is an action term and ψ is a formula (which we omit
when it is >). Intuitively, this means when one wants to take ac-
tion t, one has to choose instantiations for the ~x and ψ must hold.
Due to lack of space, we omit the formal definition of characteris-
tic graphs and refer the interested reader to [4]. Figure 1 shows the
graph corresponding to δcoffee ||δexo, where δcoffee denotes the con-
trol program presented in the introduction and δexo is the encod-
ing of exogenous actions. The nodes are v0 = 〈δcoffee || δexo,⊥〉,
v1 = 〈(pickupCoffee; bringCoffee(p); δcoffee) || δexo,⊥〉, and
v2 = 〈(bringCoffee(p); δcoffee) || δexo,⊥〉.

4.2 The Algorithm
The method we propose is inspired by the classical propositional
LTL model checking algorithm as presented in [20]. There, the idea
roughly is to combine the finite transition system (a model of the
behaviour of the system) with a finite nondeterministic Büchi au-
tomaton which encodes the set of infinite traces that satisfy the in-
put formula. The result is again a finite graph structure, and whether
or not the property in question holds can then be determined on

πa : a/Exo(a)πa : a/Exo(a)

wait/Empty(queue)

πa : a/Exo(a)

bringCoffee(p)

pickupCoffee

v1

v2

v0

πp : selectRequest(p)/
¬Empty(queue)

Figure 1. Characteristic Graph for the program δcoffee ||δexo

a purely graph-theoretical basis. In our case, the representation of
the behaviour of the system consists of two parts. On the one hand,
the characteristic graph of the program δ represents the robot’s be-
haviour, whereas the dynamics of the physical environment is en-
coded in its basic action theory Σ. Since both Σ and δ as well as
the input formula ϕ may contain first-order quantification, the state
space is in general not finite, which is why the set of traces satisfy-
ing ϕ cannot be simply captured by some finite graph structure. We
rather have to use an implicit representation in terms of first-order
formulas and thus resort to first-order theorem proving.

Formally, let ϕ ∈ ESGLTL. We need to consider all temporal sub-
formulas of ϕ, i.e. all its subformulas of the form (φi U ψi) (with
free variables ~xi) and of the form Xφj (with free variables ~xj).
As an example consider property (1), which says that on all exe-
cutions of our program δ, whenever there is some requestCoffee(p)
action, eventually there will be a selectRequest(p). If r stands for
requestCoffee and s for selectRequest , the formula is shorthand for

∀p.¬〈〈δ〉〉(> U (Occ(r(p)) ∧ ¬(> U Occ(s(p))))). (6)

The part behind the 〈〈δ〉〉 quantifier is an ESGLTL formula and con-
tains the following two temporal subformulas with free variable p:

(> U Occ(s(p))) (7)

(> U (Occ(r(p)) ∧ ¬(> U Occ(s(p))))) (8)

The idea is now to break down the truth of temporal formulas at
infinite execution traces into three different parts:

1. Local consistency:
LocCons[ϕ] is the set of local consistency constraints for all of
ϕ’s temporal subformulas of the form (φi U ψi):

∀~xi. ψi ⊃ (φi U ψi) (9)

∀~xi. (φi U ψi) ∧ ¬ψi ⊃ φi (10)

2. Single-step consistency:
Trans[ϕ] denotes the set of the transition constraints for all tem-
poral subformulas of ϕ, which express that from one situation to
the next, the well-known expansion law for the until operator must
hold, and ensure that the semantics of the next operator is obeyed:

∀~xi. (φi U ψi) ≡ ψi ∨ (φi ∧ [a](φi U ψi)) (11)

∀~xj . Xφj ≡ [a]φj (12)

3. Eventual compliance:
For each (φi U ψi) subformula, we need that infinitely often

Accept i
def
= (φi U ψi) ⊃ ψi. (13)

In order to be able to reason with these properties solely based on
first-order theorem proving, we introduce a new predicate symbol
Ui(~xi) for each (φi U ψi) subformula (whose free variables are
~xi) and similarly a new symbol Xj(~xj) for each Xφj subformula
(whose free variables are ~xj). In our example we thus get U1(p) for
(7) and U2(p) for (8). We use φ↓ to denote the result of replacing
temporal subformulas by their corresponding predicates.

To ensure eventual compliance, we use a property that is similar
to the acceptance criterion of Büchi automata, but extends it to the
first-order case. For that purpose, we introduce a new fluent Ai for
each (φi U ψi) subformula, having the successor state axiom

�[a]Ai(~xi) ≡ (Accept i↓ ∨(Ai(~xi) ∧ ¬AccAll [ϕ])) (14)

where
AccAll [ϕ]

def
=

∧
i

∀~xiAi(~xi). (15)

The idea is that the Ai “collect” all instances of Accept i, and
AccAll [ϕ] becomes true once all Ai hold for all ~xi, after which they
are reset to false. The algorithm then basically tries to prove the exis-
tence of an execution trace on which AccAll [ϕ] is satisfied infinitely
often, i.e. where always eventually AccAll [ϕ] holds.

Similar to the one presented in [4], our algorithm works on a set
L of labels on the characteristic graph of δ. A label is of the form
〈v, ψ〉, where v = 〈δ′, ·〉 is some node in the graph and ψ is a flu-
ent formula, and intuitively represents the set of all configurations
〈w, z, δ′〉 where w, z |= ψ. The algorithm is depicted below:

Algorithm 1 CHECKLTL[δ, ϕ]

LO := ∅; L := LABEL[Gδ,LocCons[ϕ]↓ ∧AccAll [ϕ]];
while L 6≡ LO do
LO := L; L := L ∪ PRE[Gδ, L];

end while
LO := ∅;
while L 6≡ LO do
LO := L; L := AND(L, PRE[Gδ, L]);

end while
return ELIM[〈 ~X, ~U〉, ϕ↓ ∧INITLABEL[Gδ, L]]

It starts with initializing the set of labels to the ones representing the
configurations where local consistency and AccAll [ϕ] hold:

LABEL[〈V,E, v0〉, α] = {〈v, α〉 | v ∈ V }.

The first while loop then does a least fixpoint computation in order to
determine the set of configurations from which such an “acceptance”
state is eventually reachable, after which the second while loop com-
putes a greatest fixpoint of labels representing those configurations
for which this is in turn always the case. In the latter case, labels
need to be combined conjunctively in the following sense:

AND(L1, L2) = {〈v, ψ1 ∧ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

The convergence criterion “L 6≡ LO” is violated if for each 〈v, ψ〉 ∈
L there is some 〈v, ψ′〉 ∈ LO with ΣUNA |= ψ ≡ ψ′ and vice versa.

In each single cycle of the loops, we need to project the set of
labels back to the one representing all possible predecessor configu-
rations which is done using the preimage operator:

PRE[〈V,E, v0〉, L] = {〈v′, ψ′〉 | v′ π~x:t/φ→ v ∈ E, 〈v, ψ〉 ∈ L}

where ψ′ is determined as follows:

ψ′ = ELIM[〈~U , ~X〉,R[∃~x.φ∧ [t]ψ ∧Trans[ϕ]at↓]∧ LocCons[ϕ]↓]

Intuitively, the formula reads as follows. To end up in v with label ψ

through edge v′
π~x:t/φ→ v, we need to pick instantiations for the ~x,

the transition condition φ has to hold and ψ must be true after do-
ing action t. Further the single-step and local consistency constraints
need to be respected. In order to obtain a new label that is itself a
first-order formula, we use regression to eliminate all references to
the successor situation, treating Ai as a normal fluent with succes-
sor state axiom (14). To regress the auxiliary predicates Ui and Xj ,
we introduce yet another predicate Ui for each Ui and Xj for each
Xj (with the same arities), replace each occurrence of Ui (Xj) in the
successor situation by Ui (Xj), and otherwise leave them unchanged:

R[Ui(~ti)]
def
= Ui(~ti), R[[t]Ui(~ti)]

def
= Ui(~ti)

R[Xj(~tj)]
def
= Xj(~tj), R[[t]Xj(~tj)]

def
= Xj(~tj)

Let us apply a few steps of the algorithm to our example. First note
that both instances of the local consistency constraint (10) are vac-
uously true as each φi is >. The set of initial labels in the example
thus is {〈v, β ∧ ∀pA1(p) ∧ ∀pA2(p)〉 | v ∈ V }, where β denotes

∀p(Occ(s(p)) ⊃ U1(p)) ∧ ∀p(Occ(r(p)) ∧ ¬U1(p) ⊃ U2(p)).

Now let us determine ψ′ for the edge v0
wait/Empty(queue)→ v0 and the

initial label of v0. The transition condition is α1 = Empty(queue),
which remains unchanged by regression. Regressing Occ(s(p))
through wait yields (wait = s(p)), which reduces to⊥ with unique
names for actions, and similar for r(p). The regression of β therefore
is equivalent to >. The regression of ∀pA1(p) ∧ ∀pA2(p) further is

α2 = ∀p.U1(p) ≡ [Occ(s(p)) ∨ U1(p)]∧
∀p.U2(p) ≡ [(Occ(r(p)) ∧ ¬U1(p)) ∨ U2(p)],

and Trans[ϕ]await↓ regresses to the conjunction of

∀p.[U1(p) ⊃ Occ(s(p))] ∨A1(p) ∧ ¬AccAll [ϕ]
∀p.[U2(p) ⊃ (Occ(r(p)) ∧ ¬U1(p))] ∨A2(p) ∧ ¬AccAll [ϕ]

which we will call α3. Then ψ′ = ELIM[〈U1,U2〉, α1∧α2∧α3∧β].
Finally we eliminate all occurrences of the Ui and Xj by the

ELIM[·] operator. ELIM[~P , α] means that we replace α by an equiv-
alent formula not mentioning the predicates ~P . This amounts to
second-order quantifier elimination, i.e. to determine a purely first-
order formula equivalent to a given ∃P1, . . . , ∃Pkβ, where β does
not contain further second-order quantifiers. The predicate elimina-
tion is necessary because of the nondeterministic nature of the single-
step consistency law (11): whereas the successor state axioms for
normal fluents determine unique values for the respective fluents if
their values in the current situation are known, the value of φi U ψi
(and thus Ui) for the successor situation is not uniquely determined
through (11). To “forget” [14] what is known about the successor
situation and thus obtain a first-order formula only talking about the
current situation, we have to eliminate all occurrences of Ui and Xj .

To implement ELIM[·] we require in the general case a sound (but
necessarily incomplete) second-order quantifier elimination tech-
nique such as SCAN [5]. Note that in many practical cases (though
not in the example above), a simple syntactic manipulation is suffi-
cient, namely when the predicates to be eliminated have arity zero,
which happens when we do not quantify into temporal subformulas
from the outside. In this special case, to eliminate P , let αP> denote
α where each occurrence of P is substituted by >, and similarly αP⊥
be α with P replaced by ⊥. Then ELIM[P, α] = αP> ∨αP⊥. Multiple
predicates can further be eliminated recursively.

If finally the second loop of the algorithm terminates, we extract
the formulas in labels at the initial node:

INITLABEL[〈V,E, v0〉, L] =
∨
{ψ | 〈v0, ψ〉 ∈ L}

The result the algorithm returns is sound in the following sense:

Theorem 2 Given α ∈ ESGCTL∗ , let β be the result of replacing
each 〈〈δ〉〉ϕ subformula by the output of CHECKLTL[δ, ϕ] in it. If this
terminates, β is a fluent formula and Σ |= α iff Σ0 ∪ ΣUNA |= β.

In our example CHECKLTL[δ, ϕ] eventually converges and produces
an output equivalent to ⊥. The original, negated formula (6) thus
holds, and that independent of any particular Σ0, as it is a property
that is already inherent in the program δ itself.

5 RELATED WORK
As stated earlier, verification of non-terminating GOLOG programs
has so far received surprisingly little attention in the Situation Cal-
culus community. Exceptions include the mentioned meta-theoretic
proofs of [8], doing classical propositional model checking with BAT
representations [9], and [4], the basis for this paper. De Giacomo,
Lespérance and Pearce [7] further present related techniques for ver-
ifying ATL [19] properties of games and multi-agent scenarios.

From a broader perspective, there is much work related to ours
in some respects. There are a number of model checking techniques
for “first-order” LTL. Typically they restrict the usage of first-order
expressiveness to ensure decidability. In [21] for instance, first-order
terms are allowed, but quantification is not. [15] presents a verifi-
cation method for programs represented by Büchi automata, where
properties are expressed using a combination of LTL with a de-
cidable description logic. An epistemic, modal variant of the Situ-
ation Calculus with branching-time temporal operators is presented
in [12]. [19] discusses ATL model checking of multi-agent systems.

6 CONCLUSION
We presented3 an algorithm for verifying a very expressive class of
properties for GOLOG programs, where temporal operators can ap-
pear nested and combined through logical connectives, including ar-
bitrary first-order quantification. Just as the less general method in
[4], the algorithm is sound, but not guaranteed to terminate. There,
the two reasons for this are that in each cycle of the algorithm’s
loop, equivalences of general first-order formulas have to be tested,
an already undecidable problem. For another, even if all equivalence
checks terminate, the loop may never reach a fixpoint, but may keep
generating new labels. The step of moving from CTL- to CTL∗-
like properties in this paper introduces yet another potential source
of non-termination, namely when the predicate elimination operator
ELIM (Section 4.2) is applied to predicates of arity greater than zero.

While this may sound bad at first, in particular compared to the
computational properties of state-of-the-art model checking tech-
niques, it nonetheless helps to understand the theoretical ideal case of
GOLOG verification that our algorithm somewhat represents. We also
argue that in many practical cases, as for the example used in this pa-
per, the worst case does not arise, but the method converges despite
(cautious) usage of first-order quantification. It is then a worthwhile
line of future research to identify subclasses of BATs and programs
for which termination actually can be ensured. Probably the most

3 A more detailed discussion including all proofs will be available in [3].

important next step in assessing the practicality of our algorithms
will however be through experimental studies. We currently work
on a PROLOG-based implementation, and preliminary experiments
are quite promising. It turned out though that our methods’ tractabil-
ity crucially depends on the representation for first-order formulas.
While previously we experimented with clausal form representations
and theorem provers, ongoing work indicates that a first-order vari-
ant of binary decision diagrams [18] is much more beneficial, both
in terms of compactness of representation and reasoning efficiency.

ACKNOWLEDGEMENTS
This work was supported by DFG under grant La 747/14-1. We also
thank the anonymous referees for their helpful comments.

REFERENCES
[1] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella, ‘NuSMV2: An OpenSource
tool for symbolic model checking’, in CAV, pp. 359–364, (2002).

[2] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, MIT
Press, 1999.

[3] J. Claßen, Planning and Verification in the Agent Language Golog,
Ph.D. dissertation, RWTH Aachen University, 2010. In preparation.

[4] J. Claßen and G. Lakemeyer, ‘A logic for non-terminating Golog pro-
grams’, in KR, pp. 589–599, (2008).

[5] D.M. Gabbay and H.J. Ohlbach, ‘Quantifier elimination in second-
order predicate logic’, in KR, pp. 425–435, (1992).

[6] G. De Giacomo, Y. Lespérance, and H.J. Levesque, ‘ConGolog, a con-
current programming language based on the situation calculus’, Artif.
Intell., 121(1-2), 109–169, (2000).

[7] G. De Giacomo, Y. Lespérance, and A.R. Pearce, ‘Situation calculus-
based programs for representing and reasoning about game structures’,
in KR, (2010).

[8] G. De Giacomo, E. Ternovska, and R. Reiter, ‘Non-terminating pro-
cesses in the situation calculus’, in Working Notes of “Robots, Softbots,
Immobots: Theories of Action, Planning and Control”, AAAI’97 Work-
shop, (1997).

[9] Y. Gu and I. Kiringa, ‘Model checking meets theorem proving: a sit-
uation calculus based approach’, in Proceedings of the 11th Interna-
tional Workshop on Nonmonotonic Reasoning (NMR-06) at KR2006,
Lake District of the UK, (June 2006).

[10] G.J. Holzmann, The SPIN Model Checker : Primer and Reference Man-
ual, Addison-Wesley Professional, 2003.

[11] G. Lakemeyer and H.J. Levesque, ‘Situations, si! Situation terms, no!’,
in KR, pp. 516–526, (2004).

[12] Gerhard Lakemeyer, ‘The situation calculus: A case for modal logic’,
Journal of Logic, Language and Information, (2010). In press, DOI
10.1007/s10849-009-9117-6.

[13] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.B. Scherl,
‘Golog: A logic programming language for dynamic domains’, J. Log.
Program., 31(1-3), 59–83, (1997).

[14] F. Lin and R. Reiter, ‘Forget it!’, in In Proceedings of the AAAI Fall
Symposium on Relevance, pp. 154–159, (1994).

[15] H. Liu, Computing Updates in Description Logics, Ph.D. dissertation,
Dresden University of Technology, 2010.

[16] J. McCarthy and P. Hayes, ‘Some philosophical problems from the
standpoint of artificial intelligence’, in Machine Intelligence 4, 463–
502, American Elsevier, New York, (1969).

[17] R. Reiter, Knowledge in action: logical foundations for specifying and
implementing dynamical systems, MIT Press, September 2001.

[18] S. Sanner and C. Boutilier, ‘Practical solution techniques for first-order
MDPs’, Artificial Intelligence, 173(5-6), 748–788, (2009).

[19] W. van der Hoek, A. Lomuscio, and M. Wooldridge, ‘On the complexity
of practical ATL model checking’, in AAMAS, pp. 201–208, (2006).

[20] M.Y. Vardi and P. Wolper, ‘An automata-theoretic approach to auto-
matic program verification (preliminary report)’, in LICS, pp. 332–344.
IEEE Computer Society, (1986).

[21] F. Wang, S. Tahar, and O.A. Mohamed, ‘First-order LTL model check-
ing using MDGs’, in ATVA, ed., F. Wang, volume 3299 of Lecture Notes
in Computer Science, pp. 441–455. Springer, (2004).

